

East Horizon Data Sheet

Multi-Arm Multi-Stage

Powerful Trial Design Platform

Analytical and simulation-driven design tools that allow comparison of promising design types.

Built to Drive Design Innovation

Easy access to adaptive designs, group sequential designs, Bayesian methods, and other leading, innovative clinical trial approaches.

Confidence

Opportunities to refine superior clinical trial designs using industry-trusted software.

East Horizon Base Features

Size Calculations	(MAMS) Designs
Sample Size Re-Estimation Designs	MCPMod Designs and Analysis
Fixed Designs	Population Enrichment Designs
Exact Designs	Multiple Endpoints Designs
Group Sequential Designs	Crossover Designs
Bayesian Designs	Program Simulations
Dose Escalation	Custom R Code Integration
System Requirements	
Optimally displayed on Google Chrome browser	R versions 4.3.0, and R 4.3.2 are supported for R integration
Internet Connectivity	Mac OS

Key Capabilities

Power and Sample

Feature	Details		
Cloud-based Simulation Resources	Integrated scalable Azure cloud computing to support design simulation and exploration		
Visualization	 Analyze & identify designs of choice by comparing different analytical designs and simulations side by side 	Evaluate individual designs with the help of detailed output tables in addition to plots	
Open-source R Integration	 Gain the flexibility and freedom to create custom designs using R alongside the built-in capabilities in East Horizon Al chatbot for R-code generation 	 Leverage the Cytel R template library to speed code development File management capabilities to make it easier to manage your R code and data files 	

Windows 10

User & Access Management

Administrative control over access to systems and projects

East Horizon Design Modules

Module	Functions	
Fixed Sample	 A wide variety of fixed sample options (continuous, binary, time-to-event) Analysis of multiple scenarios at once Complex patterns of accruals, dropouts, and follow-up time Simon's two stage design 	 Exact single-stage designs for small-sample trials (binary) Phase II single-arm screening trials Bayesian probability of success (continuous, binary, time-to-event)
Group Sequential	 Continuous, binary, and time-to-event endpoints for two-arm designs Extensive selection of families of stopping rules for efficacy and futility Display boundaries on multiple scales Go-No-Go based on surrogate endpoints 	 Conditional and predictive power calculations for interim decisions Optimize trial design for savings in sample size, study duration, and cost Stratification and subpopulation analysis
Multiplicity	 Multi-Arm Multi-Stage (MAMS) designs Extension of Group Sequential Designs (GSDs) to more than 2 arms Charts for events, sample size, accrual and study duration prediction Two-stage Treatment Selection design using p-value combination approach by Poschet. al. (Statistics in Medicine, 2005) Strong control of the family-wise error rate Mixed endpoints, gMCP Power: global, disjunctive, conjunctive, marginal 	 Tests include: Dunnett, Bonferroni, Sidak, Holm, Hochberg, Hommel, Fixed Sequence, and Fallback Piecewise hazard rates, accruals, and dropouts Simulate non-proportional hazards Multi-Arm Multi-Stage (MAMS) designs Serial and parallel gatekeeping Variable and fixed subject follow-up Fast design by batch simulation Continuous, binary, and time-to-event endpoints
Adaptive	 Adaptive rules for increasing sample size in full or sub-populations Specific adaptive tools for survival (e.g. adapt sample size and events) Promising Zone design based on unblinded interim data 	 Adjusted unbiased point estimates, confidence intervals, and p-values Population enrichment for a time-to-event endpoint Adaptive rules for increasing sample size Methods include CHW, CDL, Müller-Schäfer
Dose Escalation	 Dose recommendations for next cohort of patients Simulate dose-toxicity profiles and designs Additional Bayesian approaches for dose escalation 	 Methods include: 3+3, Continual Reassessment Method, Bayesian Logistic Regression Model, and modified Toxicity Probability Interval Dual-agent dose combination designs (BLRM, PIPE, mTPI-2)
Dose Finding	MCPMod methodology for design of dose-finding clinical trials	MCPMod methodology analysis of continuous, binary or count data

*Ask about East Horizon Add-On Products

Stay Connected

